Corrigé

- 1. Pour tout réel $x, -1 \leqslant \sin x \leqslant 1 \Leftrightarrow -2 \leqslant 2 \sin x \leqslant 2 \Leftrightarrow x-2 \leqslant x+2 \sin x \leqslant x+2$. Donc, pour tout x > 0, $\frac{x-2}{x} \leqslant \frac{x+2 \sin x}{x} \leqslant \frac{x+2}{x}$. Or, $\lim_{x \to +\infty} \frac{x-2}{x} = \lim_{x \to +\infty} \frac{x+2}{x} = 1$ donc, d'après le théorème des gendarmes, $\lim_{x \to +\infty} f(x) = 1$. De même, pour tout x < 0, $\frac{x-2}{x} \geqslant \frac{x+2 \sin x}{x} \geqslant \frac{x+2}{x}$. Or, $\lim_{x \to -\infty} \frac{x-2}{x} = \lim_{x \to -\infty} \frac{x+2}{x} = 1$ donc, d'après le théorème des gendarmes, $\lim_{x \to +\infty} f(x) = 1$.
- 2. Pour tout réel x, $-1 \leqslant \cos x \leqslant 1 \Leftrightarrow 1 \leqslant 2 + \cos x \leqslant 3$. Donc pour tout x > 0, $x^3 \leqslant (2 + \cos(x))x^3 \leqslant$. Or, $\lim_{x \to +\infty} x^3 = +\infty$ donc, d'après un théorème de comparaison, $\lim_{x \to +\infty} g(x) = +\infty$. De même, pour tout x < 0, $x^3 \geqslant (2 + \cos(x))x^3$. Or, $\lim_{x \to -\infty} x^3 = -\infty$ donc, d'après un théorème de comparaison, $\lim_{x \to -\infty} g(x) = -\infty$.
- 3. Pour tout réel $x, -1 \leqslant \sin x \leqslant 1 \Leftrightarrow x-1 \leqslant x+\sin x \leqslant x+1$, donc, pour tout x>1, $\frac{1}{x-1} \geqslant \frac{1}{x+\sin x} \geqslant \frac{1}{x+1}$, car la fonction inverse est strictement décroissante sur $]0; +\infty[$, et donc $\frac{x}{x-1} \geqslant \frac{x}{x+\sin x} \geqslant \frac{x}{x+1}$, pour tout x>1. Or, $\lim_{x\to +\infty} \frac{x}{x-1} = \lim_{x\to +\infty} \frac{x}{x+1} = 1$ donc, d'après le théorème des gendarmes, $\lim_{x\to +\infty} h(x) = 1$. De même, pour tout x<-1, $\frac{1}{x-1} \geqslant \frac{1}{x+\sin x} \geqslant \frac{1}{x+1}$, car la fonction inverse est strictement décroissante sur $]-\infty;0[$. Donc $\frac{x}{x-1} \leqslant \frac{x}{x+\sin x} \leqslant \frac{x}{x+1}$ pour tout x<-1. Or, $\lim_{x\to -\infty} \frac{x}{x-1} = \lim_{x\to -\infty} \frac{x}{x+1} = 1$ donc, d'après le théorème des gendarmes, $\lim_{x\to -\infty} h(x) = 1$.
- 4. Pour tout réel $x, -1 \le \sin x \le 1 \Leftrightarrow -3 \le 3 \sin x \le 3 \Leftrightarrow x^2 3 \le 3 \sin x \le x^2 + 3$. Or, $\lim_{x \to +\infty} x^2 3 = +\infty$ donc, d'après un théorème de comparaison, $\lim_{x \to +\infty} k(x) = +\infty$. Et $\lim_{x \to -\infty} x^2 3 = +\infty$ donc, d'après un théorème de comparaison, $\lim_{x \to -\infty} k(x) = +\infty$.